Extended Abstract

Motivation Designing multi-agent systems that scale to dynamic team sizes and maintain coordina-
tion under communication constraints is a critical challenge in real-world swarm robotics. Existing
approaches often struggle with rigid architectures that either fail to generalize across agent counts,
or that fail to allow communication among team members. Message pooling techniques inspired
by Graph Neural Networks show promise in addressing these challenges, and we investigate their
efficacy under a novel framework.

Method We propose HIVE, a novel message-pooling framework that combines shared-policy neural
networks, attention-based message aggregation, and a centralized “cloud brain.” This architecture
allows decentralized agents to communicate efficiently and generalize to different team sizes at
test time. The framework is modular, allowing for flexibility in different environments. In our
environment, a team of "ants," influenced by a "hive" cloud brain, collaborate to move a "MacGuffin"
to a goal location. We test two implementations of our framework: a non-recurrent version and a
recurrent version using an LSTM.

Implementation Our system was implemented in the GPU-accelerated Madrona Engine, enabling
training at over 500,000 timesteps per second. Agents receive LIDAR-based observations and are
trained with Proximal Policy Optimization (PPO). The reward function combines normalized distance
progress, a penalty for leaving the MacGuffin stationary, and a sparse success bonus to encourage
coordinated movement through cluttered environments.

Results Compared to a baseline joint-state MLP that demonsrtated some coordination but did not
successfully complete the task, HIVE achieved an 89% success rate with 5 agents. Additionally, the
same model generalized to an 86% success rate with 8 agents without further training, demonstrating
robustness to dynamic agent count. Attention-based message pooling is demonstrably effective in
coordinating multiple agents.

Discussion and Conclusion HIVE demonstrates that scalable, message-pooling-based coordination
enables strong generalization and robustness in dynamic multi-agent systems. The framework lays
the foundation for real-world deployable swarms and offers promising directions for future work,
including dropout resilience and runtime agent variability.
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Abstract

Multi-agent systems hold great promise for complex tasks requiring distributed
coordination, but designing architectures that scale to dynamic team sizes and com-
munication constraints remains challenging. We introduce HIVE, a novel message-
pooling framework that combines shared-policy neural networks, attention-based
aggregation, and a centralized LSTM memory module (“cloud brain™) to enable
efficient, scalable collaboration among homogeneous agents. In our 2D trans-
port environment, identical “ants” must cooperatively maneuver a single payload
through randomly generated obstacle courses to a fixed goal. HIVE’s per-agent
MLP policy heads send and receive compressed messages via self-attention, while
a global LSTM maintains temporal context and broadcasts strategic guidance back
to each agent. We train all agents with Proximal Policy Optimization (PPO) us-
ing the GPU-accelerated Madrona Engine, collecting over 500,000 timesteps per
second. Compared to a monolithic joint-state MLP baseline—which fails on all
test environments—HIVE achieves success rates above 89% across 1000 evalua-
tion maps, demonstrating robust obstacle negotiation and sustained cooperative
transport. Ablations confirm that attention is essential for performance. By sup-
porting variable team sizes at inference time without retraining, HIVE advances
resource-efficient multi-agent coordination and lays the groundwork for deployable
swarm-like systems in robotics and beyond.

1 Introduction

Multi-agent systems in the real world face challenges including connection-loss, malfunction, or
bandwidth constraints. Moreover, some systems must be able to react dynamically to new command
inputs.

We propose a novel framework to address these common challenges. We apply attention-based
message-aggregation inspired by Graph Neural Networks to enable a dynamic number of agents
controlled by a single hive mind, with model size independent of the number of agents.

We implemented two instances of our framework and investigated their efficacy in simulated environ-
ments. In our scenario, multiple decentralized agents ("ants") learn to collaborate and communicate
under bandwidth constraints, guided by a single shared "hive mind" that aggregates agent messages
and broadcasts a single message to all ants.
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Figure 1: Non-recurrent version of proposed model architecture which utilizes attention to aggregate
individual ant messages but does not feature an LSTM.

To do this, we designed a 2D, multi-agent reinforcement learning environment in the high-speed
vectorized Madrona Engine in which ants cooperate to navigate a target object ("MacGuffin") through
obstacles to a goal location.

Real-world swarms must tackle complex tasks with minimal communication. By handling dynamic
team sizes and channel constraints, HIVE pushes resource-efficient coordination forward, addresses
challenges faced by previous works, and opens the door to a future with deployable swarm-like
assistants. Moreover, our framework is easily adaptable to general environments by substituting
different ant and hive mind networks while maintaining fundamental message-pooling operations.

2 Related Work

Our work builds on several threads of multi-agent reinforcement learning (MARL), particularly
models that emphasize communication and coordination. CommNet (Sukhbaatar et al., 2016)
introduced differentiable communication by averaging message vectors, but this approach does not
scale well to large, noisy agent populations. More recent works such as TarMAC (Das et al.| 2019)
and DIAL (Foerster et al., 2016) have introduced selective attention and message gating mechanisms
to prioritize information. However, many of these systems assume fixed numbers of agents or require
explicit receiver modeling. We instead adopt a shared-policy and cloud memory approach inspired
by transformer style attention and collective memory, enabling the policy to generalize across a
dynamically changing population. Our architecture also draws influence from “hivemind” models
like Actor-Attention-Critic (Igbal and Shal 2019), though our use of a single LSTM to manage global
temporal strategy is unique.

3 Method

3.1 Model Architecture

We designed two custom attention-based models. They draw inspiration from Graph Neural Networks
(GNNs), which must aggregate information from a variable number of neighbors. Foremost among
these techniques is attention-based message pooling. We apply this framework to agents, aggregating
observations from a variable number of agents.
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Figure 2: Full, recurrent network framework for training multi-agent models which allows for inter
agent communication and dynamic number of agents.

Our first model, the "non-recurrent” model, has each ant convert observations o into a message mt
using an MLP with shared weights. Messages are combined using attention-based message pooling
with a learned query parameter to create a single "command" c¢t. This command is broadcast to
all ants and combined with observations to create actions a’;, which are inputted to the simulation.
Note that the model size is completely independent of the number of ants. See Fig{I|for a diagram.
Because we train using PPO, we also design a critic. The critic is identical to the actor described
here, except the command is transformed directly into the scalar value prediction using an MLP; no
actions are produced.

Our second model is our "recurrent” model. It varies from the non-recurrent model in two ways.
The first is the addition of an LSTM block after message pooling. The second difference is that
ants use the command of the previous time step ¢! ~!, not the current command c?, to generate their
actions and messages. This enables the hivemind and the ants to run in parallel; ants interact with the
environment while the hivemind processes their observations. Note that the model size is once again
completely independent of the number of ants. See Fig. [2|for a diagram. The critic in this scenario is
identical to the non-recurrent critic, with the exception of an LSTM block after message pooling.

We also implemented a simple MLP network to act as a baseline. It receives the concatenated
observations of ants as inputs. The actor outputs actions, and the critic outputs a value estimation.
Note that all agents are controlled together by a single model, and the model depends on the number
of ants in the simulation.

3.2 Simulation Design

To assess whether the proposed model architecture offers improvements to existing multi-agent
training methods, we designed a simulation that could demonstrate whether a dynamically sized
hive of agents could perform a collective task (Fig.[3). In our simulation, a variable number of
homogeneous “ant” agents cooperate to transport a single target object—the MacGuffin—to a fixed
goal location. Each agent follows simple planar dynamics and perceives its surroundings through a
simulated LiDAR sensor, returning distances to nearby obstacles and the MacGuffin. At the beginning
of each episode, obstacles of varying shapes and sizes are scattered at random throughout the arena,
creating a cluttered environment for the agents to navigate while manipulating the MacGuffin.



(a) Initialized HIVE environment (b) Ants retrieving MacGuffin (¢) MacGuffin moving to goal

Figure 3: Snapshots from the HIVE simulation environment with 8 ants controlled by the full,
recurrent model trained on 5 ants. The agents successfully coordinate to move the Macguffin (red)
around a randomly placed wall and toward the target (green).

The collective (or “Hive”) reward at each timestep ¢ consists of three components: (1) a normalized
distance-reduction reward
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where d; is the Euclidean distance from the MacGuffin to the goal at time ¢ and d is the initial
distance—ensuring that if the MacGuffin is carried all the way to the goal, >, rdist = o3 (2) a
stationary penalty

it = —p1 [Ut < Uth] 2
where v; is the magnitude of the MacGuffin’s planar velocity at timestep ¢, vy, is a small velocity
threshold below which the MacGuffin is considered “stuck,” and 3 is chosen so that if the MacGuffin
remains below threshold for all T}, steps, Zt |r$t2t| = B; and (3) a sparse success bonus
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awarded once at the end of the episode if the MacGuffin finishes within a small radius € of the goal.
Formally, the total episode reward is

T
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Here, o, 8, and «y control the relative weighting of progress, motion maintenance, and task completion,
respectively, with « = 1 and 8 = 1 chosen so that each term can contribute at most 1 over the
course of T}, steps. In contrast to our earlier design—which used a constant existential penalty
to encourage fast completion—we replaced that term with a velocity-based stationary penalty. This
change ensures agents must keep the MacGuffin moving around obstacles, rather than simply rushing
directly toward the goal, thereby promoting sustained cooperative transport behaviors in complex
environments.

3.3 Simulation Implementation

Given the complexity of our proposed simulation and model, simulation and training was implemented
using the a 3D research game engine which can run simulations in parallel on
a GPU allowing us to run well over 500,000 concurrent timesteps per second
[2023). Instead of fully developing a new Madrona based system, the simulation was developed
starting from Shacklett et al.’s Madrona Escape Room environment, which has similar agents and
models, ultimately adapting the reward function, environment objects, agent observations, models,
and training algorithm.

3.4 Training Algorithm

We adopted Proximal Policy Optimization (PPO) as our training algorithm due to its robustness,
ease of implementation, and strong empirical performance in continuous control and multi-agent



reinforcement learning settings. PPO strikes a balance between sample efficiency and training stability
by clipping policy updates to prevent excessively large gradient steps, which is especially important
in our scenario where the agents share a policy and interact through a centralized message-pooling
architecture.

In our setup, all ants share a single policy network, which receives individualized inputs but contributes
to a joint message-pooling mechanism and shared global LSTM memory. PPO’s ability to handle
shared policy learning with high variance input distributions makes it well-suited for this architecture.
Additionally, PPO’s compatibility with vectorized environments allowed us to leverage Madrona’s
massive parallelism, collecting thousands of episodes in parallel to quickly train robust cooperative
behaviors across dynamic team sizes and randomized obstacle layouts.

4 Experimental Setup

To evaluate the impact of architectural choices on multi-agent cooperation, we conducted a series
of controlled experiments across multiple environment seeds. We compared the performance of our
non-recurrent and recurrent models to the baseline, simple MLP network, by training all three models
in randomized environments with 5 ants. Models were trained until average rewards appeared to
plateau.

Once models were trained, we evaluated their performance in 1000 episodes for 1000 timesteps each,
recording (1) the percentage of successful episodes where the MacGuffin is moved to the goal and (2)
the number of remaining timesteps in each of these successful episodes.

First, the MLP, non-recurrent, and recurrent models were evaluated with 5 ants, the same number of
agents with which the models were trained with, and then the non-recurrent and recurrent models
were evaluated with 8 agents, assessing how generalizable the models are to a number of agents not
seen in the training data. Note that due to the fundamental structure of the baseline MLP network,
the model trained on 5 agents could not be extended to any other number of agents, pointing to an
inherent challenge in building multi-agent RL systems which our model seeks to address.

Table 1: Evaluation atrix for model architectures

Model Training Evaluation Metrics
Baseline (MLP) 5 ants 5 ants (1) Success rate
(2) Remaining timesteps
Non-recurrent 5 ants 5, 8 ants (1) & (2)
Recurrent 5 ants 5, 8 ants (1) & (2)
5 Results

5.1 Quantitative Evaluation

Table 2] and Fig. [5] summarize the performance of our three architectures. The attention-based
models dramatically outperform the baseline MLP, which fails on all 1000 test environments. The
non-recurrent model achieves the highest peak reward and learns marginally faster than the recurrent
model. Both attention-based models converge to similar long-run rewards (around 0.0005-0.0006),
demonstrating that recurrence alone does not raise the final performance under the current reward
scaling.

In contrast to the baseline, both attention-based models enabled all agents to participate effectively.
The non-recurrent variant achieved the highest success rate (§9%) on 5 ants, with strong generalization
to 8 ants (86%), a situation completely outside the training data. The recurrent model, while slightly
less successful (73%), still demonstrated strong coordination and generalized to 8 ants (68 %). These
results confirm that attention-based message pooling leads to significantly more effective cooperation,
enabling scalable, generalizable behaviors across varying agent counts.
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Figure 4: Smoothed training reward per step for the non-recurrent and recurrent HIVE models.

Table 2: Evaluation results for final models (1000 test environments)

Model Success Rate  Worlds Completed Avg. Time Left
Baseline MLP (5 ants) 0.00 0/ 1000 0.0000
Non-recurrent (5 ants) 0.89 892 /1000 0.6961
Non-recurrent (8 ants) 0.86 863 /1000 0.7101
Recurrent (5 ants) 0.73 731/ 1000 0.5896
Recurrent (8 ants) 0.68 676/ 1000 0.6120

5.2 Qualitative Evaluation

We visualized rollouts of each model to qualitatively understand their strategies and pitfalls. For the
baseline MLP model, qualitative inspection revealed that only a subset of the ants contributed to
pushing the MacGuffin, while the rest remained idle or counterproductive. This inefficiency led to
slow or no progress, preventing completion within the time limit. We hypothesize that this inefficiency
is partially because an MLP is inherently less suited to inter-agent coordination, as it fails to leverage
the identical observation and command structure of each agent.

In contrast, we observed the recurrent and non-recurrent HIVE models successfully using all agents
to cooperate and move the MacGuffin[5} even with 8 ants, a situation completely outside the training
data. All agents contributed to the task’s success.

However, no model completely learned to navigate all obstacles. We observed worlds where the ants
pushed the MacGuffin into a barrier blocking the way to the goal, instead of moving the MacGuffin
around the barrier. We did observe some qualitative improvement as training continued, despite a
plateau of rewards, as they began to push the MacGuffin at an angle along the wall, not fully stuck.
We hypothesize that a larger model or further training would overcome this obstacle.

6 Discussion

Generally, our results demonstrate the success of a novel framework for architecture design in multi-
agent scenarios that is more robust to real-world challenges. We hope that this work serves as a
launching point for further research into the messages-command framework, testing the framework
in new environments and with different models for "ants" and the "hivemind".



Figure 5: Agents in the non-recurrent model demonstrating an efficient strategy by scooping under
the MacGuffin to reduce its friction.

This framework was designed to possess many characteristics making it uniquely suited to the real
world. First, we explicitly test that models trained under the framework generalize well to scenarios
with a new number of agents. When agents can lose connection to the controlling server or be
destroyed (e.g. nano-bots or drones), the architecture must be robust to a dynamic number of agents.
Additionally, by removing the command structure, or by repeatedly applying recent commands, we
hypothesize that agents could be able to operate independently for short periods, without further input
from the cloud. Finally, we note that the command structure is uniquely suited for dynamic input (e.g.
natural language commands from a human) by inserting them into the command or message.

While we are hopeful that this framework could have substantial real-world impact in the future, there
are current limitations. In our test environment, agents coordinated, but generally failed to navigate
the MacGuffin around walls. We hypothesize this could be due to model size or training time.

Future work begins with experimentation with more dynamic factors is needed, testing how varying
the number of agents within a single rollout affects performance. Additional testing includes "signal
dropout," where commands are not transmitted for a short period of time. More broadly, we hope this
framework inspires novel architectures in the messages-command framework, substituting alternative
architectures for the "ants" and "hivemind."

7 Conclusion

In this work, we introduced HIVE, a flexible multi-agent message-pooling framework that combines
shared-policy attention with a centralized LSTM memory module to enable dynamic team sizes
and efficient inter-agent communication. Throughout experiments in a 2D cooperative transport
environment, HIVE consistently outperformed a standard joint-state MLP baseline—achieving high
success rates both at training scale (5 agents) and in zero-shot generalization to larger teams (8 agents).
Our comparative analysis showed that both attention-based message aggregation and global memory
are essential for sustaining coordinated behaviors in cluttered arenas. By replacing a simple existential
time penalty with normalized progress and velocity-based stationary rewards, we encouraged agents
to navigate around obstacles rather than merely rush toward the goal, resulting in more robust obstacle
negotiation. While our current implementation did not explore signal dropout or varying agent
counts within single rollouts, these remain promising directions for future research. Overall, HIVE
represents a scalable, resource-efficient approach to multi-agent reinforcement learning, offering a
clear path toward deployable swarm-like systems in robotics and beyond.



8 Team Contributions

All authors collaborated on the high-level problem formulation, model design, and the writing of all
deliverables. In addition:

Ty Toney

» Adapted and implemented the Madrona simulation environment and training infrastructure.

* Conducted extensive debugging to ensure system stability.

Julian Allchin

 Set up and managed GPU-accelerated training infrastructure.

* Led hyperparameter tuning for model and algorithm configurations.

Diego Bustamante

* Designed and tuned the new reward function (normalized distance + stationary penalty).

* Built and integrated the logging pipeline for episode-level metrics and performance tracking.

Changes from Proposal While our core architectural plan (shared-policy attention with a cen-
tralized LSTM “hivemind”’) remained unchanged, we made two major departures from the original
proposal. First, we redesigned the reward structure: instead of the proposed constant existential
penalty, we adopted a normalized distance-reduction term and a velocity-based stationary penalty
that each sum to one over the episode horizon, plus a sparse success bonus. This adjustment better
incentivized agents to maintain motion around obstacles rather than simply rush toward the goal.
Second, we extended our evaluation beyond the training-condition (5 ants) to test generalization to
8-agent teams—a scenario the baseline MLP cannot handle.

However, several planned experiments were deferred. We did not implement “signal-dropout” trials
(randomly silencing the hivemind for brief intervals) nor blended varying agent counts within single
rollouts, both of which remain avenues for future work. Additionally, while we intended a more
extensive hyperparameter sweep over LSTM sizes and message-compression ratios, time and compute
constraints limited us to a single configuration per model.

References

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and
Joelle Pineau. 2019. TarMAC: Targeted Multi-Agent Communication. In Proceedings of the
36th International Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 1538-1546. https:
//proceedings.mlr.press/v97/das19a.html

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. 2016. Learning
to Communicate with Deep Multi-Agent Reinforcement Learning. In Advances in Neural Infor-
mation Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.),
Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf

Shariq Igbal and Fei Sha. 2019. Actor-Attention-Critic for Multi-Agent Reinforcement Learning. In
Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
2961-2970. https://proceedings.mlr.press/v97/igball9a.html

Brennan Shacklett, Luc Guy Rosenzweig, Zhigiang Xie, Bidipta Sarkar, Andrew Szot, Erik Wijmans,
Vladlen Koltun, Dhruv Batra, and Kayvon Fatahalian. 2023. An Extensible, Data-Oriented
Architecture for High-Performance, Many-World Simulation. ACM Trans. Graph. 42, 4 (2023).


https://proceedings.mlr.press/v97/das19a.html
https://proceedings.mlr.press/v97/das19a.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.mlr.press/v97/iqbal19a.html

Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. 2016. Learning Multiagent Com-
munication with Backpropagation. In Advances in Neural Information Processing Systems,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2016/file/
55b1927fdafef39c48e5b73b5d61eab0-Paper. pdf


https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf

	Introduction
	Related Work
	Method
	Model Architecture
	Simulation Design
	Simulation Implementation
	Training Algorithm

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion
	Conclusion
	Team Contributions

